动脉网知识库

登录动脉网

账号密码登录

忘记密码?

手机账号登录

获取验证码

忘记密码

获取验证码

新用户注册

获取验证码

绑定手机号

获取验证码

感谢您使用“动脉网”的产品和服务。 我们尊重并保护所有使用动脉网用户的个人隐私权。
第1条 协议内容及生效
1.1 本用户协议是用户与“动脉网”之间就相关事宜所订立的契约,即包括本用户协议所有正文及“动脉网”已经发布或将来可能发布的各类规则。用户在“动脉网”注册前,必须事先认真阅读本用户协议,特别是本协议中关于限制、减轻或者免除“动脉网”责任的全部协议内容以及含有限制用户权利的协议内容。
1.2 如果用户同意本用户协议,或者存在包括下载、注册和使用及连接“动脉网”服务的行为,将被视为完全接受并同意遵守本用户协议的所有内容,包括接受“动脉网”对用户协议随时所做的任何修改,本协议即构成对双方有约束力的法律文件。如不同意本用户协议,用户不得使用或应主动停止使用“动脉网”提供的服务。
1.3 用户应当为具有完全民事行为能力的自然人,或者是具有独立承担法律责任能力的其他合法主体。若用户属于无民事行为能力、限制民事行为能力人的,或是不具有独立承担法律责任能力的其他主体的,您应在监护人监护下或是得到有权主体授权后使用“动脉网”。
第2条 用户信息
2.1 用户个人信息。用户个人信息包括真实姓名、手机号码、微信号、所属行业、所在公司,现任职位、常驻城市、本人照片、身份证号、微信支付账号、电子邮箱、个人简介等。
2.2 非用户个人信息。用户在“动脉网”上,包括阅读、评价、操作状态、使用记录、使用习惯等在内的全部记录信息。除本条第1款所列用户个人信息范围外的所有信息,均为非用户个人信息。
2.3 第三方平台记录信息。用户通过腾讯微信等第三方平台账号注册、登录、使用“动脉网”服务的,将被视为用户完全理解、同意并接受“动脉网”已包括但不限于收集、统计、分析等方式使用其在腾讯微信等第三方平台填写、登记、公布、记录的全部信息。用户一旦使用第三方平台账号注册、登录、使用“动脉网”服务,“动脉网”对该第三方记录信息的任何使用,均被视为已经获得了用户本人的完全同意并接受。
2.4 用户自行向“动脉网”提供个人信息、教育经历、工作经历、课程主题和介绍以及其他信息,所提供的信息必须在合法基础上保证真实、准确、完整,并保证及时更新以上信息。如因提供的信息存在非法、抄袭、错误等问题,用户需承担因此引发的相应责任以及后果,且“动脉网”保留终止用户使用“动脉网”各项服务的权利。
2.5 用户应维护个人“动脉网”帐户和密码安全,并对此帐户在“动脉网”的所有行为负完全责任,不得将帐户借给他人使用,否则应承担由此产生的全部责任,并与实际使用人承担连带责任。当遇到账户或者密码未获授权使用,或者发生任何安全问题时,用户有责任及时有效地通知到“动脉网”并向公安机关报案。
2.6 用户信息使用,用户在使用过程中发现任何不妥或者不满意之处,有权向“动脉网”提出申请,要求进行相关信息删除等处理;“动脉网”不承担主动删除、销毁用户信息的责任。
2.7 为向用户提供服务,“动脉网”将在合理范围内使用用户个人信息、非用户个人信息以及第三方平台记录信息。用户一旦注册、登录、使用“动脉网”服务,将被视为“动脉网”已包括但不限于收集、统计、分析、商业用途等方式使用用户信息。“动脉网”对用户信息的使用无需其他意思表示,无需向用户支付任何费用。
第3条 服务条款的修改及终止
3.1 “动脉网”的服务范围非常广泛,因此有时还会适用一些附加条款或产品要求(包括行业要求)。附加条款将会与相关服务一同提供,并且在用户使用这些服务后,成为您与我们所达成的条款的一部分。
3.2 “动脉网”始终在不断更改和改进服务。一旦条款及服务内容产生变动,将会在重要页面上提示修改内容。如果不同意我们对条款内容所做的修改,用户可以主动、随时停止使用我们的服务,尽管我们对此表示非常遗憾。
3.3 “动脉网”也可能随时停止向您提供服务,或随时对我们的服务增加或设置新的限制。
3.4 “动脉网”认为用户拥有自己数据的所有权并保留对此类数据的访问权限,这一点非常重要。如果我们停止某项服务,在合理可能的情况下,“动脉网”会向用户发出合理的提前通知,并让用户有机会将信息从服务中汇出。
3.5 如果用户继续使用“动脉网”的服务,则视为接受服务条款的变动。我们保留随时修改或中断服务的权利。我们行使修改或中断服务的权利,不需对用户或第三方负责。
第4条 服务的中断和终止
4.1 在未向用户收取相关服务费用的情况下,“动脉网”可自行全权决定以任何理由 (包括但不限于“动脉网”认为用户已违反本条款的字面意义和精神等) 终止对用户的服务。同时“动脉网”可自行全权决定,在发出通知或不发出通知的情况下,随时停止提供全部或部分服务。服务终止后,“动脉网”没有义务为用户保留原用户资料或与之相关的任何信息,或转发任何未曾阅读或发送的信息给用户或第三方。
4.2 如存在下列情况,“动脉网”可以通过注销用户的方式终止服务: 在用户违反本条款相关规定时,“动脉网”有权终止向该用户提供服务。“动脉网”将在中断服务时通知用户。但如该用户在被“动脉网”终止提供服务后,再一次直接或间接或以他人名义注册为“动脉网”用户的,“动脉网”有权再次单方面终止为该用户提供服务; 一旦“动脉网”发现用户注册资料中主要内容是虚假的,“动脉网”有权随时终止为该用户提供服务; 用户出现作弊行为,网站可根据情况作出处理,甚至注销用户; 其它“动脉网”认为需终止服务的情况。第三方,但基于交易纠纷、技术原因等因素,“动脉网”保有复制、审查服务过程中录音内容的权利。
第5条 用户言行
5.1 用户同意在使用“动脉网”服务过程中,必须严格遵守以下规则: 1) 遵守中国法律法规、行政规章以及规范性文件; 2) 遵守“动脉网”的所有用户协议、通知、协议等文件; 3) 不得为违法、犯罪等目的使用“动脉网”网站及其移动客户端; 4) 不得在“动脉网”上传输及发布以下内容:煽动抗拒、破坏宪法及法律法规实施的言论;煽动颠覆国家政权、破坏国家统一的言论;违背社会风俗和社会道德的言论;煽动民族仇恨、民族歧视,破坏民族团结的言论; 5) 不得使用任何侮辱或毁谤他人,性骚扰,或对未成年人有不良影响的内容; 6) 不得散布淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪的行为; 7) 不得利用本站从事洗钱、窃取商业秘密、窃取其他用户个人信息等违法犯罪活动; 8) 不得侵入本站及国家计算机信息系统,不得传播病毒、特洛伊木马、定时炸弹等可能对“动脉网”造成伤害或影响其正常运转的恶意病毒或程序; 9) 不得在“动脉网”平台从事非经“动脉网”同意的所有牟利性经营活动; 10) 不得侵犯第三方权利,特别是他人著作权、商标权等知识产权或者合法权利。
5.2 若用户有发布违法信息、严重违背社会公德、以及其他违反法律禁止性规定的行为,“动脉网”保有删除各类不符合法律政策或者不真实信息内容而无须通知用户的权利。若用户未遵守以上约定,“动脉网”有权立即终止对用户提供服务,采取暂停或者关闭用户账户等措施。用户须对自己的言论和行为负法律责任。
第6条 知识产权协议
6.1 对于用户通过“动脉网”发布的任何公开信息,用户同意“动脉网”在全世界范围内具有将此等内容编入当前已知的或以后开发的其他任何形式的作品、媒体或技术中的权利。
6.2 除法律规定外,未经“动脉网”书面等任何形式明确许可,任何单位或个人不得以任何方式非法地全部或部分复制、转载、引用、链接、抓取或以其他方式使用“动脉网”的信息内容,否则,“动脉网”有权追究其法律责任。
6.3 用户在“动脉网”所发布的内容,必须保证已经拥有必要权利或授权以进行该内容的提供、发布、提交等行为。
6.4 本用户协议已经构成《中华人民共和国著作权法》及相关法律规定的著作财产权等权利转让书面协议,其效力及于用户在“动脉网”上发布的任何受著作权法保护的作品内容。
第7条 隐私声明
“动脉网”非常重视对用户个人隐私的保护。 “动脉网”在必要时候需要某些信息才能为您提供所请求的服务,本隐私声明针对这些情况下的数据收集和使用情况。作为“动脉网”用户,如果同意接受“动脉网”用户协议及隐私声明,表明您授权“动脉网”对任何您所提供的、或者“动脉网”所收集到的信息有权进行处理、传播、使用。 本隐私声明适用于“动脉网”的所有服务,随着服务的变化,“动脉网”有权对隐私条款不时进行修改更新,且不再另行通知。更新后的隐私声明一旦公布即有效代替原来的隐私声明,您在访问和使用“动脉网”时,即表示您已同意遵守并接受最新的隐私政策。建议您及时关注隐私条款的变更。
7.1 “动脉网”隐私信息范围,通常情况下,在“动脉网”注册、获取服务时所提交的个人信息,包括姓名、联系方式、通讯地址、第三方帐户信息等。
7.2 信息隐私的保护
“动脉网”严格保护您个人信息的安全。我们使用各种安全技术和程序来保护您的个人信息不被未经授权的访问、使用或泄露。 当用户对网站或者移动客户端的服务表示兴趣时,或者向用户提供服务出现问题或者困难时,我们使用这些信息来联系用户。 未经用户同意,“动脉网”不会向第三方提供用户信息,也不会在用户之间传递这些信息。未经用户同意,“动脉网”不会对用户之间的交流信息,包括评价、交流文本和图片内容进行编辑、筛选、篡改。
如果有明确证据表明您所提供的信息存在不符合法律政策或者不真实情况,我们有权无须通知您对信息进行删除、更改等处理。
第8条 免责说明
8.1 就下列相关事宜的发生,“动脉网”不承担任何法律责任: 1)用户应遵守国家的有关法律、法规和行政规章制度。如有用户违反国家法律法规或本用户协议,“动脉网”有权停止向用户提供任务而不需要承担任何责任,如导致“动脉网”遭受任何损害或者遭受任何来自第三方的纠纷、诉讼、索赔要求等,用户须向“动脉网”赔偿相应的损失,用户需对其违反用户协议所产生的一切后果承担全部法律责任。 2)由于您将用户密码告知他人或与他人共享注册帐户,由此导致的任何个人信息的泄露,或其他非因“动脉网”原因导致的个人信息的泄露; 3)根据法律规定或政府相关政策要求提供您的个人信息; 4)任何通过黑客攻击、电脑病毒侵入等非法截取、访问等方式从我们网站上获取的信息; 5)因台风、地震、海啸、洪水、停电、战争、恐怖袭击等不可抗力因素导致的任何后果;
8.2 本服务涉及到互联网及移动通讯等服务,可能受各个环节不稳定因素的影响,比如不可抗力、计算机病毒或者黑客攻击等造成的服务中断或不能满足用户要求的风险,用户须理解和认可,并承担以上风险。“动脉网”对服务的及时性、安全性、准确性不作担保,对因此导致用户不能接收信息,或者传递错误等问题不承担任何责任。
8.3 如“动脉网”的系统发生故障影响到本服务的正常运行,“动脉网”承诺第一时间内与相关单位配合,及时处理进行修复。但用户因此而产生的经济损失,“动脉网”不承担责任。此外,“动脉网”保留未经事先通知为维修保养、升级或其他目的暂停本服务任何部分的权利。
第9条 适用法律框架以及纠纷解决途径
9.1 本协议的订立、执行和解释及争议的解决均应适应中国法律。
9.2 如双方就本协议内容或其执行发生争议,双方应尽量友好协商解决;协商不成时应任何一方均可向有管辖权的中华人民共和国大陆地区法院提起诉讼。
第10条 其他
10.1 如果您在中国大陆以外的国家或地区访问或使用“动脉网”,您有责任遵守所在辖区内有关在线行为和可接受内容的法律。
10.2 本服务的所有权、运作权和一切解释权归“动脉网”所有。“动脉网”有权在必要时修改用户协议,并通过网站或者客户端发布修改变更,且不再另行通知。如果在更改生效后用户继续使用服务,则视为您接受用户协议的变动并遵守最新用户协议。
如果您对用户协议有任何疑问,请联系客服(微信同号):13627682184

AI赋能药物研发背后的逻辑

作者:动脉网 2020-07-05 08:00

{{detail.short_name}} {{detail.main_page}}

{{detail.description}} {{detail.round_name}} {{detail.state_name}}

{{detail.province}}-{{detail.city}}
{{detail.setup_time}}
融资金额:{{detail.latest_event_amount}}{{detail.latest_amount_unit}}
投资方: · {{item.latest_event_tzf_name}}
企业数据由提供支持
查看

本文作者:中经合集团 李帅博士


李帅博士拥有近4年的医疗领域的风险投资经验和8年的分子肿瘤生物学和生物技术药物的研究经验。在进入风险投资领域之前,李帅博士在北京大学天然药物与仿生药物国家重点实验进行博士后的训练,并作为助理研究员培养博士生。在此期间,帅博士在基因治疗等生物技术药物的研究开发方面做出了很多顶尖的原创性工作。他博士阶段在北京大学基础医学院从事肿瘤的分子机制和转化医学研究,期间在顶尖科学杂志上发表了多篇研究论文。 


                                                                              


新药研发周期长、成功率低以及研发费用高,一直是困扰制药企业的魔咒。最新数据显示,平均需要约14年,花费26亿美元才能将一款新药成功推上市场。AI技术日新月异的发展给很多行业带来了变革,制药业也同样将受益于AI带来的技术红利,来解决行业痛点,提高药物开发效率。也因此,全球诞生了超过200多家专注于AI制药的创新创业公司。

 

什么是AI赋能的药物开发?


新药研发是一项环节多、时间长、风险高的工程,主要包括药物发现、临床前研究、临床研究以及审批与上市4个阶段。药物发现阶段主要涉及疾病选择、靶点发现和化合物合成;临床前研究阶段则以化合物筛选、晶型预测、化合物验证为主,包括药物的构效关系分析、稳定性分析、安全性评价和ADMET分析等;临床研究阶段以患者招募、临床试验和药物重定向为主,涉及用药方案、药效试验、患者观察记录、优化改进等;审批与上市阶段主要是政府药品主管机构对药企研发的新药进行审批,是新药流入市场的最后关口。


1_副本.png


AI赋能药物开发流程图总览


人工智能是赋予计算机感知、学习、推理及协助决策的能力,从而通过与人类相似的方式来解决问题的一组技术。利用AI技术在自然语言处理、图像识别、深度学习和认知计算等方面的优势,可以协助药物专家提高新药研发各个环节的效率。


简单来说,AI主要可以帮助人类找到难以发现的潜在关系和利用算法来增强计算能力。AI具备自然语言处理、图像识别、机器学习和深度学习能力,不仅能够更快地发现显性关系而且能够挖掘那些不易被药物专家发现的隐性关系,构建药物、疾病和基因之间的深层次关系。在计算方面,AI具备的强大认知计算能力,可以对候选化合物进行虚拟筛选,更快的筛选出具有较高活性的化合物为后期临床试验做准备。


AI在新药研发领域主要应用于靶点发现、化合物合成、化合物筛选、性质预测、晶型预测、患者招募、优化临床试验设计和药物重定向等多个应用场景。DEEP KNOWLEDGE ANALYTICS “PHARMA DIVISION” 对全球150家AI制药创业公司的分析报告《AI FOR DRUG DISCOVERY, BIOMARKER DEVELOPMENT AND ADVANCED R&D LANDSCAPE OVERVIEW 2019 / Q1”》指出,聚焦于利用AI进行药物设计的公司最多,其次是数据收集和分析。


2_副本.png

AI赋能药物研发公司总览


AI赋能药物研发领域繁荣的背后逻辑

 

新药研发面临着研发周期长,成功率低,费用高的问题,提升cost effective是当前药企发展的重要议题,AI会是一个强有力的突破点,也因此近年在AI制药领域诞生了数百家的创业公司。

 

从全球医药市场销售额看,2017年已经突破12000亿美元,预计到2021年销售总额可达到14750亿美元2012~2021年的年均复合增长率为4.9%。而同时期中国医药市场的销售额将从2012年的770亿美元增长到2021年的1780亿美元,年均复合增长率达到9.8%,是全球医药市场的2倍。这表明全球医药市场在稳步增长,而中国医药市场的增长更快,具备更好的发展潜力。


3_副本.png

2012年-2021年 全球和中国医药市场销量变化情况


虽然医药市场在稳定增长,但是药物研发成本越来越高。EvaluatePharma2019年的报告显示,2018年全球药企的研发费用达到了1790亿美元,预计2024年会达到2130亿美元,年复合增长率约3%,约占销售收入的20%。研发成本日益增高,是药企的重要成本支出。


4-1_副本.png

2010-2014年 全球药物研发总成本


从中国的具体情况来说,政府从2015年开始进行了大力的医疗体制改革,目的是降低医保支出,解决看病难看病贵的问题。中国医疗正在经历从保证基本需求向提高优质医疗医药可及性转变的过程,即从首先解决有没有的问题,转向解决质量和费用的问题。


在制药领域,2016年3月5日,国务院办公厅印发《关于开展仿制药质量和疗效一致性评价的意见》(国办发〔2016〕8号),标志中国仿制药质量和疗效一致性评价工作全面展开。


以前中国仿制药有自己的特点,很多仿制药与原研药在质量上有较大区别,原研药专利悬崖现象在中国没有出现,药品价格居高不下,而仿制药一致性评价政策的实施就是解决药品质量的问题,使得仿制药疗效与原研一致。2018年开始推行药品集中采购政策解决药品价格问题。同年12月6日“4+7”集采中药品的中标价格大幅下降,平均降幅达到了52%。药品巨大幅度的降价使得仿制药的利润空间非常有限,迫使制药企业必须要进行创新药的研发才可能赢得继续生存发展的一席之地。


然而创新药需要大量的资金和时间,考虑研发失败的风险,新的数据估算一款创新药成功上市需要26亿美元大约14年的研发周期,大概比2003年增长了145%,巨额的成本是一般药企难以负担的,所以有效够降低药物研发成本是药企的必然之路。也因此AI技术赋能制药领域备受关注,成为了2019年最热的话题之一。


5_副本.jpg

AI赋能药物研发时间线


从科学的角度来解释,人类2万多个可编码蛋白的基因,其中10%-15%与疾病相关,而可作为小分子药物靶点的小于700种,容易的靶点已经开发殆尽,剩下的都是难度很高的或者难以成药的靶点,需要投入更多的时间和经济成本才可能成功。低垂的果实已经没有了,如何找增量以及提高效率成为了当前新药研发的主题,能快速摘到深藏或隐藏的果实、又或者将树叶树枝变为果实(寻找增量)的公司才是未来制药领域的赢家。


当前随着信息技术的迅猛发展,AI技术正在成为制药领域潜在有力的突破点。比如利用AI强大的发现能力寻找新的药物靶点,药物重定向,挖掘微生物组宝库等等应用。虽然仍有很多问题和质疑,但却是必须要拥抱的未来方向。

 

AI制药领域发展的限制因素


1
学科交叉人才稀缺

AI赋能药物研发是一个信息科技赋能传统行业的交叉领域,既需要AI的人才也需要懂药物研发的人才,同时双方必须要能够理解对方的专业语言和思路,才能很好地配合。


这样的团队很难搭建,需要长时间的磨合。相应的人才储备对应不同的商业模式,创新药的开发链条长环节多,优质人才要熟悉整个过程,某个环节的缺失可能会拖慢整个过程,这样只能单点突破选择CRO的商业模式。

 

2
数据获取难

AI训练模型需要优质的数据,而新药领域的数据大都在药企,公开的数据比较有限,所以如何获取优质的数据是AI制药初创公司需要解决的问题。能够跟跨国药企合作的初创公司在市场上会非常具有竞争力。


中国过去做创新药的实践很少,但是近几年实施了多项政策鼓励创新药发展,呈现了繁荣发展的态势,药企相关的数据虽然不比跨国药企,但是也在快速积累。另外中国CRO公司(如药明康德等)发展迅速,掌握了大量的数据,尤其是临床前的研发数据。中国的基础科研突飞猛进,科研论文数量已经是世界第一,背后也积累了海量的数据。AI制药的初创企业要积极跟学术界和产业龙头合作,获得优质数据是立足之本。

 

3
商业模式的选择

新药开发周期很长,目前也没有AI制药公司宣布利用AI技术开发的药物成功上市,AI在新药开发上的价值也不易量化评估,在做好长期奋斗的同时,开展一些CRO的业务来补充公司的现金也是不错的选择,不过需要思考好如何处理好CRO和做药的商业模式。


公司自己做药物开发就是药企的竞争对手,而CRO模式是为药企提供服务,两种商业模式可能会存在一些利益冲突,所以要想清楚开展这两种商业模式的具体环节,阶段,比重等问题。从商业价值的角度来说,药物开发比CRO的市场更大,收益更高,但是对公司的挑战更大,对人才的要求也更高。

 

4
开发强AI,才能更好地体现出AI在药物开发中的价值

弱人工智能(Artificial Narrow Intelligence,简称ANI)是指仅在单个领域比较牛的人工智能程序。比如的谷歌AlphaGo,便是弱人工智能的典型代表。其特征便是虽然很擅长下围棋,却无法与你玩一把飞行棋。


强人工智能(Artificial General Intelligence,简称AGI)则是能够达到人类级别的人工智能程序。不同于弱人工智能,强人工智能可以像人类一样应对不同层面的问题,而不仅仅只是下下围棋,写财报报道。不仅如此,它还具有自我学习、理解复杂理念等多种能力。


也正因此,强人工智能程序的开发比弱人工智能要困难很多。而药物开发涉及环节众多,虽然目前一些环节已经在应用AI,但是需要强人工智能才能打通各个环节,更好地赋能制药领域。


中国AI药物研发公司现状


中国对于创新药的研发有着非常强烈的需求,但对创新药研发历史较短,经验不足,而且研发投入的巨额资金和长周期的风险使得国内药企对于创新药开发既爱又恨。而利用AI技术解决现在创新药研发周期长失败率高的问题有非常好的前景,也因此,在中国诞生了大大小小数十家专注AI制药的创新企业。

 

中经合集团看好AI制药领域的发展潜力,也已经投资了数家以不同角度切入制药领域的“AI+制药”的公司:


搭建AI技术平台提高药物筛选和药物设计的效率——英飞智药,开发真正可以赋能药物发现阶段各个环节的AI技术进行药物研发;


利用AI从新的作用机制——Panorama,利用深度学习对海量RNA组学数据进行分析开发靶向RNA剪接过程的小分子或者大分子药物;


新的靶点和组合——Enginebio,全基因功能网络分析寻找新的靶点和组合;


新的资源宝库——Deepbiome,利用AI对海量的微生物组数据进行分析挖掘,越过微生态药阶段直接找到背后的小分子药物。


去年中经合集团还收获了动脉网数字医疗十佳投资机构和中国AI药物开发投资机构top5的奖项。

 

Panorama Medicine是一家由风险资本投资的创业公司,由世界顶尖的计算和实验RNA生物学家组成的多学科团队创立。Panorama利用独有的基因大数据分析和深度学习技术加速药物研发过程,旨在高效开发由于RNA剪接异常引起的疾病的药物。

 

英飞智药是一家以创新药物为目标,以人工智能为驱动的初创公司。英飞智药在新药研发中充分利用并持续发展先进的AI药物发现技术,打造自主知识产权的AI+新药研发平台—智药大脑TM。英飞智药拥有多款候选药物的成功开发经验和业界领先的开发成功率,将创新候选药的开发周期从3-6年缩短到6个月至2年,致力于高效批量开发自主创新药物品种,也为医药企业的新药研发提供先进的技术服务和知识产权解决方案。

 

DeepBiome是由来自Harvard/Broad研究所的团队创立的一家AI药物发现公司。他们聚焦于挖掘人类微生物组这一极具前景和前沿的领域,这是一个基本未被开发的药物先导化合物的宝库。DeepBiome希望利用最新的人工智能(AI)技术,彻底改变目前高成本、低效的药物发现过程。

 

Enginebio是由世界领先的MIT Broad研究所的科学家Tim Lu创立的利用人工智能技术进行药物发现的公司。在计算科学、合成生物学和药物发现领域的专家领导下,公司将高通量、大规模并行的生物实验与高通量计算结合起来,破译生物医学网络,增强药物开发过程产生新的药物。

 

参考文献:

  • Mak, K.K., Pichika, M.R. Artificial intelligence in drug development: present status and future prospects, Drug Discov. Today (2018), https://doi.org/ 10.1016/j.drudis.2018.11.014

  • FOR DRUG DISCOVERY, BIOMARKER DEVELOPMENT AND ADVANCED R&D LANDSCAPE OVERVIEW 2019 / Q3,https://www.ai-pharma.dka.global/AI-for-DD-2019-Q3

  • AI新药研发市场发展现状及趋势报告,动脉网蛋壳研究院

  • World Preview 2019, Outlook to 2024, EvaluatePharma



注:文中如果涉及企业数据,均由受访者向分析师提供并确认。如果您有资源对接,联系报道项目,寻求合作等需求请填写需求表

声明:动脉网所刊载内容之知识产权为动脉网及相关权利人专属所有或持有。转载请联系tg@vcbeat.net。

分享

微信扫描二维码分享文章