动脉网知识库

登录动脉网

账号密码登录

忘记密码?

手机账号登录

获取验证码

忘记密码

获取验证码

新用户注册

获取验证码

绑定手机号

获取验证码

感谢您使用“动脉网”的产品和服务。 我们尊重并保护所有使用动脉网用户的个人隐私权。
第1条 协议内容及生效
1.1 本用户协议是用户与“动脉网”之间就相关事宜所订立的契约,即包括本用户协议所有正文及“动脉网”已经发布或将来可能发布的各类规则。用户在“动脉网”注册前,必须事先认真阅读本用户协议,特别是本协议中关于限制、减轻或者免除“动脉网”责任的全部协议内容以及含有限制用户权利的协议内容。
1.2 如果用户同意本用户协议,或者存在包括下载、注册和使用及连接“动脉网”服务的行为,将被视为完全接受并同意遵守本用户协议的所有内容,包括接受“动脉网”对用户协议随时所做的任何修改,本协议即构成对双方有约束力的法律文件。如不同意本用户协议,用户不得使用或应主动停止使用“动脉网”提供的服务。
1.3 用户应当为具有完全民事行为能力的自然人,或者是具有独立承担法律责任能力的其他合法主体。若用户属于无民事行为能力、限制民事行为能力人的,或是不具有独立承担法律责任能力的其他主体的,您应在监护人监护下或是得到有权主体授权后使用“动脉网”。
第2条 用户信息
2.1 用户个人信息。用户个人信息包括真实姓名、手机号码、微信号、所属行业、所在公司,现任职位、常驻城市、本人照片、身份证号、微信支付账号、电子邮箱、个人简介等。
2.2 非用户个人信息。用户在“动脉网”上,包括阅读、评价、操作状态、使用记录、使用习惯等在内的全部记录信息。除本条第1款所列用户个人信息范围外的所有信息,均为非用户个人信息。
2.3 第三方平台记录信息。用户通过腾讯微信等第三方平台账号注册、登录、使用“动脉网”服务的,将被视为用户完全理解、同意并接受“动脉网”已包括但不限于收集、统计、分析等方式使用其在腾讯微信等第三方平台填写、登记、公布、记录的全部信息。用户一旦使用第三方平台账号注册、登录、使用“动脉网”服务,“动脉网”对该第三方记录信息的任何使用,均被视为已经获得了用户本人的完全同意并接受。
2.4 用户自行向“动脉网”提供个人信息、教育经历、工作经历、课程主题和介绍以及其他信息,所提供的信息必须在合法基础上保证真实、准确、完整,并保证及时更新以上信息。如因提供的信息存在非法、抄袭、错误等问题,用户需承担因此引发的相应责任以及后果,且“动脉网”保留终止用户使用“动脉网”各项服务的权利。
2.5 用户应维护个人“动脉网”帐户和密码安全,并对此帐户在“动脉网”的所有行为负完全责任,不得将帐户借给他人使用,否则应承担由此产生的全部责任,并与实际使用人承担连带责任。当遇到账户或者密码未获授权使用,或者发生任何安全问题时,用户有责任及时有效地通知到“动脉网”并向公安机关报案。
2.6 用户信息使用,用户在使用过程中发现任何不妥或者不满意之处,有权向“动脉网”提出申请,要求进行相关信息删除等处理;“动脉网”不承担主动删除、销毁用户信息的责任。
2.7 为向用户提供服务,“动脉网”将在合理范围内使用用户个人信息、非用户个人信息以及第三方平台记录信息。用户一旦注册、登录、使用“动脉网”服务,将被视为“动脉网”已包括但不限于收集、统计、分析、商业用途等方式使用用户信息。“动脉网”对用户信息的使用无需其他意思表示,无需向用户支付任何费用。
第3条 服务条款的修改及终止
3.1 “动脉网”的服务范围非常广泛,因此有时还会适用一些附加条款或产品要求(包括行业要求)。附加条款将会与相关服务一同提供,并且在用户使用这些服务后,成为您与我们所达成的条款的一部分。
3.2 “动脉网”始终在不断更改和改进服务。一旦条款及服务内容产生变动,将会在重要页面上提示修改内容。如果不同意我们对条款内容所做的修改,用户可以主动、随时停止使用我们的服务,尽管我们对此表示非常遗憾。
3.3 “动脉网”也可能随时停止向您提供服务,或随时对我们的服务增加或设置新的限制。
3.4 “动脉网”认为用户拥有自己数据的所有权并保留对此类数据的访问权限,这一点非常重要。如果我们停止某项服务,在合理可能的情况下,“动脉网”会向用户发出合理的提前通知,并让用户有机会将信息从服务中汇出。
3.5 如果用户继续使用“动脉网”的服务,则视为接受服务条款的变动。我们保留随时修改或中断服务的权利。我们行使修改或中断服务的权利,不需对用户或第三方负责。
第4条 服务的中断和终止
4.1 在未向用户收取相关服务费用的情况下,“动脉网”可自行全权决定以任何理由 (包括但不限于“动脉网”认为用户已违反本条款的字面意义和精神等) 终止对用户的服务。同时“动脉网”可自行全权决定,在发出通知或不发出通知的情况下,随时停止提供全部或部分服务。服务终止后,“动脉网”没有义务为用户保留原用户资料或与之相关的任何信息,或转发任何未曾阅读或发送的信息给用户或第三方。
4.2 如存在下列情况,“动脉网”可以通过注销用户的方式终止服务: 在用户违反本条款相关规定时,“动脉网”有权终止向该用户提供服务。“动脉网”将在中断服务时通知用户。但如该用户在被“动脉网”终止提供服务后,再一次直接或间接或以他人名义注册为“动脉网”用户的,“动脉网”有权再次单方面终止为该用户提供服务; 一旦“动脉网”发现用户注册资料中主要内容是虚假的,“动脉网”有权随时终止为该用户提供服务; 用户出现作弊行为,网站可根据情况作出处理,甚至注销用户; 其它“动脉网”认为需终止服务的情况。第三方,但基于交易纠纷、技术原因等因素,“动脉网”保有复制、审查服务过程中录音内容的权利。
第5条 用户言行
5.1 用户同意在使用“动脉网”服务过程中,必须严格遵守以下规则: 1) 遵守中国法律法规、行政规章以及规范性文件; 2) 遵守“动脉网”的所有用户协议、通知、协议等文件; 3) 不得为违法、犯罪等目的使用“动脉网”网站及其移动客户端; 4) 不得在“动脉网”上传输及发布以下内容:煽动抗拒、破坏宪法及法律法规实施的言论;煽动颠覆国家政权、破坏国家统一的言论;违背社会风俗和社会道德的言论;煽动民族仇恨、民族歧视,破坏民族团结的言论; 5) 不得使用任何侮辱或毁谤他人,性骚扰,或对未成年人有不良影响的内容; 6) 不得散布淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪的行为; 7) 不得利用本站从事洗钱、窃取商业秘密、窃取其他用户个人信息等违法犯罪活动; 8) 不得侵入本站及国家计算机信息系统,不得传播病毒、特洛伊木马、定时炸弹等可能对“动脉网”造成伤害或影响其正常运转的恶意病毒或程序; 9) 不得在“动脉网”平台从事非经“动脉网”同意的所有牟利性经营活动; 10) 不得侵犯第三方权利,特别是他人著作权、商标权等知识产权或者合法权利。
5.2 若用户有发布违法信息、严重违背社会公德、以及其他违反法律禁止性规定的行为,“动脉网”保有删除各类不符合法律政策或者不真实信息内容而无须通知用户的权利。若用户未遵守以上约定,“动脉网”有权立即终止对用户提供服务,采取暂停或者关闭用户账户等措施。用户须对自己的言论和行为负法律责任。
第6条 知识产权协议
6.1 对于用户通过“动脉网”发布的任何公开信息,用户同意“动脉网”在全世界范围内具有将此等内容编入当前已知的或以后开发的其他任何形式的作品、媒体或技术中的权利。
6.2 除法律规定外,未经“动脉网”书面等任何形式明确许可,任何单位或个人不得以任何方式非法地全部或部分复制、转载、引用、链接、抓取或以其他方式使用“动脉网”的信息内容,否则,“动脉网”有权追究其法律责任。
6.3 用户在“动脉网”所发布的内容,必须保证已经拥有必要权利或授权以进行该内容的提供、发布、提交等行为。
6.4 本用户协议已经构成《中华人民共和国著作权法》及相关法律规定的著作财产权等权利转让书面协议,其效力及于用户在“动脉网”上发布的任何受著作权法保护的作品内容。
第7条 隐私声明
“动脉网”非常重视对用户个人隐私的保护。 “动脉网”在必要时候需要某些信息才能为您提供所请求的服务,本隐私声明针对这些情况下的数据收集和使用情况。作为“动脉网”用户,如果同意接受“动脉网”用户协议及隐私声明,表明您授权“动脉网”对任何您所提供的、或者“动脉网”所收集到的信息有权进行处理、传播、使用。 本隐私声明适用于“动脉网”的所有服务,随着服务的变化,“动脉网”有权对隐私条款不时进行修改更新,且不再另行通知。更新后的隐私声明一旦公布即有效代替原来的隐私声明,您在访问和使用“动脉网”时,即表示您已同意遵守并接受最新的隐私政策。建议您及时关注隐私条款的变更。
7.1 “动脉网”隐私信息范围,通常情况下,在“动脉网”注册、获取服务时所提交的个人信息,包括姓名、联系方式、通讯地址、第三方帐户信息等。
7.2 信息隐私的保护
“动脉网”严格保护您个人信息的安全。我们使用各种安全技术和程序来保护您的个人信息不被未经授权的访问、使用或泄露。 当用户对网站或者移动客户端的服务表示兴趣时,或者向用户提供服务出现问题或者困难时,我们使用这些信息来联系用户。 未经用户同意,“动脉网”不会向第三方提供用户信息,也不会在用户之间传递这些信息。未经用户同意,“动脉网”不会对用户之间的交流信息,包括评价、交流文本和图片内容进行编辑、筛选、篡改。
如果有明确证据表明您所提供的信息存在不符合法律政策或者不真实情况,我们有权无须通知您对信息进行删除、更改等处理。
第8条 免责说明
8.1 就下列相关事宜的发生,“动脉网”不承担任何法律责任: 1)用户应遵守国家的有关法律、法规和行政规章制度。如有用户违反国家法律法规或本用户协议,“动脉网”有权停止向用户提供任务而不需要承担任何责任,如导致“动脉网”遭受任何损害或者遭受任何来自第三方的纠纷、诉讼、索赔要求等,用户须向“动脉网”赔偿相应的损失,用户需对其违反用户协议所产生的一切后果承担全部法律责任。 2)由于您将用户密码告知他人或与他人共享注册帐户,由此导致的任何个人信息的泄露,或其他非因“动脉网”原因导致的个人信息的泄露; 3)根据法律规定或政府相关政策要求提供您的个人信息; 4)任何通过黑客攻击、电脑病毒侵入等非法截取、访问等方式从我们网站上获取的信息; 5)因台风、地震、海啸、洪水、停电、战争、恐怖袭击等不可抗力因素导致的任何后果;
8.2 本服务涉及到互联网及移动通讯等服务,可能受各个环节不稳定因素的影响,比如不可抗力、计算机病毒或者黑客攻击等造成的服务中断或不能满足用户要求的风险,用户须理解和认可,并承担以上风险。“动脉网”对服务的及时性、安全性、准确性不作担保,对因此导致用户不能接收信息,或者传递错误等问题不承担任何责任。
8.3 如“动脉网”的系统发生故障影响到本服务的正常运行,“动脉网”承诺第一时间内与相关单位配合,及时处理进行修复。但用户因此而产生的经济损失,“动脉网”不承担责任。此外,“动脉网”保留未经事先通知为维修保养、升级或其他目的暂停本服务任何部分的权利。
第9条 适用法律框架以及纠纷解决途径
9.1 本协议的订立、执行和解释及争议的解决均应适应中国法律。
9.2 如双方就本协议内容或其执行发生争议,双方应尽量友好协商解决;协商不成时应任何一方均可向有管辖权的中华人民共和国大陆地区法院提起诉讼。
第10条 其他
10.1 如果您在中国大陆以外的国家或地区访问或使用“动脉网”,您有责任遵守所在辖区内有关在线行为和可接受内容的法律。
10.2 本服务的所有权、运作权和一切解释权归“动脉网”所有。“动脉网”有权在必要时修改用户协议,并通过网站或者客户端发布修改变更,且不再另行通知。如果在更改生效后用户继续使用服务,则视为您接受用户协议的变动并遵守最新用户协议。
如果您对用户协议有任何疑问,请联系客服(微信同号):13627682184

继研究成果被MICCAI收录后,深睿医疗另有5篇论文入选ICCV 2019

作者:动脉网 2019-08-22 14:42

{{detail.short_name}} {{detail.main_page}}

{{detail.description}} {{detail.round_name}} {{detail.state_name}}

{{detail.province}}-{{detail.city}}
{{detail.setup_time}}
融资金额:{{detail.latest_event_amount}}{{detail.latest_amount_unit}}
投资方: · {{item.latest_event_tzf_name}}

屏幕快照 2019-08-22 下午2.35.12.png


近期ICCV 2019论文收录工作已经结束,深睿研究院共有5篇论文被收录,其中一篇更是被选为口头报告(Oral)。ICCV全称是IEEE International Conference on Computer Vision,与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议。由于ICCV在世界范围内每两年召开一次,在论文投稿和录用上竞争异常激烈,上一届ICCV 2017,共收到2143篇论文投稿,其中仅621篇被收录,接收比例为28.9%。而就今年官方公布的数据来看,大会共计收到投稿4328篇,与上届相比,整体稿件数量翻倍,优质论文的竞争更为激烈,最终收录1077篇,接收比例为24.8%。

 

ICCV的论文集往往代表了国际计算机视觉领域最新的发展方向和趋势。今年深睿医疗入选的5篇论文主要研究方向既包括医学影像分析也包括计算机视觉基础方法,其中2篇论文是人工智能医疗应用领域具有创新性突破的科研成果,将会进一步推动深睿医疗Dr.Wise®人工智能医学辅助诊断产品的不断创新和发展,促使人工智能技术更好地为临床服务。

 

其中一篇题目为“Learning with Unsure Data for Medical Image Diagnosis”的论文,由深睿医疗与北京大学、首都医科大学和微软亚洲研究院共同进行研究。本文主要解决的是如何更好地利用非确定性医疗标注数据进行诊断模型训练。

 

在临床场景中,当疾病尚处于早期阶段时,因为缺乏足够的信号和信息,仅基于图像的疾病预测,难以对某些病例给出确定性的“疾病/正常”标签,这类样本被称为“不确定”数据。但“不确定”并不意味着数据是无效的,临床上经常通过建议患者进行后续检查,进而获得最终的临床诊断结果,这就避免了因为不谨慎预测可能造成的不可逆转的医疗事故或损失。然而,当前的机器学习方法大多忽略了“不确定”数据,主要针对“疾病和正常”两类样本数据进行建模,导致对“不确定”数据不能进行更好地识别。

 

为了解决上述问题,本文提出了“学习不确定数据”问题,并将其建模为序数回归问题,从而提出了统一的端到端深度学习框架,同时从框架设计上还考虑了1)结合代价敏感参数来减轻数据不平衡问题,以及2)通过在训练程序中引入两个参数来执行保守和积极的策略。实验表明,在阿尔茨海默病(AD)早期诊断和肺结节的疾病预测任务中,使用不确定数据进行学习具有非常明显的优势和很高的有效性。


屏幕快照 2019-08-22 下午2.35.51.png

                                不确定数据模型框架

 

另外一篇论文“Align, Attend and Locate: Chest X-ray Diagnosis via Contrast Induced Attention Network with Limited Supervision”是采用弱监督学习技术进行胸部X光病灶的检测,众所周知,由于胸部X光片在医院的门诊/急诊检查以及体检筛查中非常普遍,所以基于胸片异常征象的自动检测识别方法对胸腔疾病的早期诊断具有重要的临床意义。而且对于医疗场景异常征象的分类以及定位相对于单纯的征象分类具有更强的临床价值和可解释性,但是受限于数据标注成本过高的原因,目前可公开获取的高质量标注数据集数量严重不足,使得征象定位的准确率目前还比较低。

 

本文正是主要聚焦在征象分类+定位这一问题上,利用胸片结构高度相似的特点,将阳性样本和阴性样本配对,在高层语义空间利用二者差异产生的注意力机制(Contrast Induced Attention)对病灶的潜在位置给予引导。同时,针对胸片尤其是床旁片拍摄角度、距离等不同造成的成像差异,借鉴风格迁移算法中常用的感知损失函数(Perceptual Loss),训练了一个输出校正参数的对齐模块(Alignment Module),能够将所有胸片对齐校正到统计意义上的标准结构胸片(Canonical Chest)。在位置标注非常有限的Chest X-ray 14数据集上,将征象分类和定位准确率带来了显著提升,超过当前最优算法。

 

屏幕快照 2019-08-22 下午2.36.24.png


算法流程:首先,对齐校正模块通过仿射变换将配对的阳性阴性样本统一对齐到标准胸片的视角;然后,阳性和阴性样本二者差异产生的注意力机制施加在阳性样本的高层特征空间;最后,识别和定位的主线输出征象的类别和位置信息。


本次的入选论文中也有三篇是深睿研究院在基础计算机视觉领域的科研成果,其中最值得一提的是作为口头宣讲的论文“Dynamic Graph Attention for Referring Expression Comprehension”。Referring Expression Comprehension(指称语句理解)旨在根据给定的自然语言描述在图像中定位目标物体,其中,指称语句不仅直接描述目标物体也可能描述其与其它物体的关系。本文作者从语言驱动视觉推理的角度去探索这一复杂的多模态问题,提出的动态图注意力网络同时建模指称语句的语言结构和图像物体之间的关系,并将语言结构作为多步视觉推理的指导信息。实验结果表明,动态图注意力网络不仅比现有方法拥有更高的预测精确度,还通过逐步定位复杂语句描述的目标物体,让视觉推理过程更具可解释性,更容易被可视化。另外两篇论文则是在视频显著物体检测和三维人体姿态估计方面的创新性研究。


>>>>

ICCV 2019入选的五篇论文


1. Jingyu Liu, Gangming Zhao, Yu Fei, Ming Zhang, Yizhou Wang, Yizhou Yu. “Align, Attend and Locate: Chest X-ray Diagnosis via Contrast Induced Attention Network with Limited Supervision.” IEEE International Conference on Computer Vision (ICCV), Seoul, October 2019. 

2. Botong Wu, Xinwei Sun, Lingjing Hu, Yizhou Wang. “Learning with Unsure Data for Medical Image Diagnosis.” IEEE International Conference on Computer Vision (ICCV), Seoul, October 2019.

3. Hai Ci, Chunyu Wang, Xiaoxuan Ma, and Yizhou Wang. “Optimizing Network Structure for 3D Human Pose Estimation.” IEEE International Conference on Computer Vision (ICCV), Seoul, October 2019. 

4. Haofeng Li, Guanqi Chen, Guanbin Li, Yizhou Yu. “Motion Guided Attention for Video Salient Object Detection.” IEEE International Conference on Computer Vision (ICCV), Seoul, October 2019. 

5. Sibei Yang, Guanbin Li, Yizhou Yu. “Dynamic Graph Attention for Referring Expression Comprehension”(Oral Presentation).IEEE International Conference on Computer Vision (ICCV), Seoul, October 201


注:文中如果涉及动脉网记者采访的数据,均由受访者提供并确认。如果您有资源对接,联系报道项目,寻求合作等需求请填写 需求表

声明:动脉网所刊载内容之知识产权为动脉网及相关权利人专属所有或持有。转载请联系tg@vcbeat.net。

分享

微信扫描二维码分享文章